

EOSDIS Core System Architecture Overview Ron Williamson

Mission to Planet Earth

EOSDIS Distributed Active Archive Centers

ECS Program Schedule

94E008-24(V1)

User Interaction Model

Science Researcher

Science Advisory

Panel

Tirekickers

Operations Staff

Academia

Prototype Workshops

Evaluation Packages

Technical Meetings

User Recommendations

Ad Hoc Groups

Document Review

Formal Review

Independent
Architecture Studies

NASA Funded Research

Refined

- Requirements
- Implementations
- Operational concepts
- Design
- Operations
- Architecture
- Technology Infusion

Some History

GSDIS/UserDIS Study

- NRC: "Provision of common GCDIS (and UserDIS) software, database structures, and technical infrastructure for an interoperable network"
- Results of Study: There are components of GCDIS/userDIS which ECS can provide without leaving its mission envelope and without a lot of additional cost, by carefully choosing the appropriate architectural direction.

Boundaries

- Cannot Compromise EOS Primary Mission Objectives
 - Must Preserve EOS Data (An Extremely Valuable National Resource)
 - Cannot Endanger the High-Volume Data Ingest and Production Operation
 - Cannot Degrade Critical Capabilities of EOS Researchers

Distributed Information Systems

Locally distributed

Homogeneous

Centrally managed

Relatively static

Data searching

Standard query interfaces

Information System Federations

Globally distributed

Heterogeneous

Autonomous

Dynamic

Information discovery

Hypermedia browse paradigms

Automatic subscriptions

Intelligent search agents

Key Challenges

Data

- Diverse data types and representations
- Extremely large volume of data (TB/day and PB archives)
- Complex data product interdependencies
- Changes in scientific algorithms accompany increased understanding
- Long-term archival of data ("national resource")

Users

- Diverse user communities
 - disciplines, expertise, objectives, methods, tools
- Geographically distributed
- Widely varying computational and networking capabilities

Other

- Evolving technologies, data sources, and investigative approaches
- Federation objectives (GCDIS, UserDIS contexts)

EOSDIS Core System Context

ECS Architecture

Diverser User Community	Educational Government Government EOS Scientists	non-EOS Scientists
Extensible Client Environment	Client Applications/Tools Applica	tions Interface
Extensible Provider Network	Distributed Inter-site Data	Management
Evolvable Data Management Architecture Autonomous Provider Sites	objects & components Distributed Active Archive Centers	objects & & objects & & & & & & & & & & & & & & & & & & &
Distributed Data Sources	EOS and Other PlatformsAncillary/Correlative Data	Other Data Sources

ECS Protocol Layers

EOSDIS Data Model

Data Model is a critical part of the overall design

Data Center System Context

Client Overview

Client Capabilities

ECS client provides search and access capabilities to ECS services

- User access via GUI Objects
- Machine-to-Machine access via API libraries

Basic ECS Desktop provides GUI framework for

- Installation of GUI Objects and tools
- Tool launching and object embedding
- Data format translation

Framework provides for extensibility to add

- Science user tools and data types
- (GUI interfaces to) new services

Interoperability and Data Management Overview

Interoperability and Data Management Capabilities

Information Discovery (Advertising Service)

- Interactive browsing and searching of service and data collection advertisements
- Hypertext links to detailed documentation
- Retrieve service interface to desktop

Dynamic binding of clients to services, dynamic addition/relocation of services (Interoperability)

Explain terms to support query formulation (Data Dictionary Service)

Search across data collections at a single site (Local Information Management Service)

Search across multiple sites (Distributed Information Management Service)

Data Server Overview

Manages data for both the PUSH and PULL aspects of EOSDIS.

Key Points

- Receives requests in terms of ESDTs which are converted to functions on CSDTs
- flexibility to store and manage different types
- DBMS selection influences design solution
- highly desirable that it supports multiple FSMS
- highly desirable that it supports sub-file access
- must support multiple archive technologies

Ingest, Planning and Processing Overview

Technical Issues

ECS uses COTS to reduce cost, but most COTS is not yet ready to support a large distributed, heterogeneous business model. Examples:

- ECS Advertising uses COTS data replicator (Sybase)
- Production coordinated across DAACs using COTS (Autosys)

ECS uses distributed objects - Gateways provide Internet access

- Distributed Object Technology not ready yet for big time Internet use
- ECS is still holding off on adoption of CORBA

Most ECS servers rely on the ECS communications and management infrastructure

• Some re-engineering will be needed to allow them to operate in a different and loosely federated ESIS infrastructure